
Departement Informatik
Institut f�ur Computersysteme

Marco A�A� Sanvido

A Computer System for
Model Helicopter
Flight Control

Technical Memo Nr� ��
The Software Core

April ��� ����

	�




Contents

� Introduction �

� Memory Organization �

��� Heap � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Stacks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Interrupt Vector Table �IVT� � � � � � � � � � � � � � � � � � � � � �
��� Caches � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The File System �

��� The RAM Disk � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� The ROM Disk � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


� Input and Output �
��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Analog to Digital Converters � � � � � � � � � � � � � � � � � � � � ��
��� Pulse Width Modulation and Rotor

Frequency � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Serial Communication � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Digital I
O � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� FPGA initialization � � � � � � � � � � � � � � � � � � � � � � � � � ��

� The Linker�Loader �	

��� Linking Process � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

	 Host Protocol ��

��� Host to Target � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Target to Host � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Debugging � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Real
Time Scheduling ��

	�� Tasks and Their Priority � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Implementation and Performance � � � � � � � � � � � � � � � � � � ��
	�� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Floating
point Emulation ��

�� Look�ahead Optimization � � � � � � � � � � � � � � � � � � � � � � ��

�� Performance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Floating�point Library � � � � � � � � � � � � � � � � � � � � � � � � ��

i



� Numerical Support ��
��� The Math Module � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� The MatLib Module � � � � � � � � � � � � � � � � � � � � � � � � � �	

�� The Startup Process ��

�� HelyOS Commands ��

�� HLog Module ��

A FPGA ��

B Helicopter System Modules �	

ii



Chapter �

Introduction

This technical memo describes the software core of Olga�� The computer ar�
chitecture was described in memo nr� � ����� The whole system� except the
bootstrapping code that resides in ROM was written with the Oberon for
StrongARM compiler described in memo nr� � �����

The software core furnishes the basic functionality � device drivers� inter�
rupt handlers� memory management� debugging and linking
loading � to the
helicopter auto pilot application ���� therefore it has to be as small and as fast
as possible� We think we achieved this goal with less than �� Kbytes object code�
With the use of the new features of the compiler we were able to implement the
device drivers and memory management in an e�cient way�

The module structure in �gure ��� shows the organization of the software
core� The base module is HKernel� It implements the memory management�
UART driver and the RAM disk driver� HFiles and HFileDir modules implement
a �le system for the RAM disk and ROM disk� HModules implements the
linking
loader� HelyOS� is the main module� it implements the scheduling and
starts the command loop� This procedure then waits for incoming commands to
be executed on the target system� The ADC module reads analog values� �lters
and converts them into the desired unit� The Servo module reads the input
PWM� signal generated from the pilot transmitter and generates the output
PWM signal for the auto pilot functions� We will see afterwards in detail where
all these signals are generated and used� The module HLog writes information
to the host computer system� The FPE module implements the �oating�point
emulation� This is necessary because the StrongARM processor has no �oating�
point unit� The Math and MatLib modules are a set of e�ciently implemented
mathematical functions�

�Oberon Language Goes Airborne
�The name HelyOS and not HeliOS was chosen mainly for two reasons� one� because a

system named HeliOS� a real�time operating system for the ARM processor� already exists�

Second because when I wrote the module for the �rst time� I mistyped the name
�
Pulse W ith Modulation

�



ServoADC FPE Math

MatLib

HelyOS

HModules

HFiles

HKernel

HFileDir

HLog

Figure ���� Software Core

�



Chapter �

Memory Organization

00000000H

00800000H

Flash ROM
02000000H

02100000H
Configuration

03000000H
UART

ADC
03080000H

FPGA
03180000H

RAM

1

2

3

4

Figure ���� Memory Map

Figure ��� shows the four di�erent parts of the memory layout adopted� The
�rst block of 
 Mbytes is the RAM of the system� the second block of � Mbyte
is the system ROM� actually an in�system�programmable FlashROM� The third
block is used to execute the special commands for refreshing the SDRAM chips�
In the last block all the I
O locations are memory mapped� More details can be
found in the report ����� Figure ��� shows in detail how the RAM is subdivided�

��� Heap

The heap implementation is very simple� There is a linked list of free blocks�
A simple �rst��t strategy is used for the allocation of a new block� At �rst

�



Undef. Stack

IRQ Stack

MMU Table

SVC Stack

Software Core

Heap

00000000H

00000100H
FIQ Stack

00000300H

00004000H

00040000H

IVT

007FFFFFH

(variable)

00005000H

Figure ���� Memory Organization

sight this seems to be a simplistic solution� but we have to keep in mind that
the system will run only a single application � the controller of the helicopter �
and that a complex heap management scheme will not be needed� This is the
simplest but also the most e�ective solution in terms of code size and allocation
time� Moreover no garbage collection is implemented since the heap will be used
only for the allocation of modules and variables� The procedures that handle
the heap are�

MODULE HKernel�

PROCEDURE Alloc�VAR a� Ptr�� size� INTEGER��

PROCEDURE Release�a� Ptr���

PROCEDURE MemAvail�VAR size� INTEGER��

END HKernel�

The standard procedure NEW�� represents a call to the procedure Alloc���
Therefore there is no need to directly call Alloc� Since no garbage collection
is provided the procedure Release�� has to be called whenever a block needs
to be freed� The procedure MemAvail returns the amount of heap space still
available�

�



��� Stacks

There are four di�erent stacks� one for each mode of operation of the
StrongARM ��� that we use �supervisor� unde�ned� fast�interrupt and normal�
interrupt�� Figure ��� shows the location of the four stacks in RAM� The MMU
Table � to be explained later � is placed between the SVC Stack and the IRQ
Stack� This unusual location is due to the fact that the MMU table can be
placed only in speci�c locations in memory� Normally the processor is in Su�
pervisor Mode� We choose not to run the processor in User Mode since the
software core does not have to protect itself from malicious applications� The
other important operation modes are IRQ Mode and FIQ Mode� These are
entered when the processor starts an interrupt handler� In the �rst case this
happens in response to a timer that interrupts the processor at a frequency of
��� Hz� in the second case in response to an UART request� The fourth and
�nal mode is the Unde�ned Instruction� When and how this mode is used will
be discussed in more detail in chapter 
� The StrongARM has other operation
modes which are not used in our implementation�

��� Interrupt Vector Table �IVT�

The StrongARM uses this table to jump to the interrupt handlers� The table is
initialized during startup� An interrupt handler has to register its entry address
in the table with the InstallHandler procedure� The structure of the table is
shown in Figure ���� The compiler extends this table for the NEW�� handler�
placed at the address ��H�

DEFINITION HKernel�

PROCEDURE InstallHandler�handle� PROCEDURE��� vector� INTEGER��

END HKernel�

��� Caches

To accelerate code execution of the processor we use the on�chip caches and
memory management� The StrongARM has a �� Kbytes ���way associative in�
struction cache� a �� Kbytes ���way associative write�back data cache� a memory
management unit �MMU� and a 
�entry write bu�er� As mentioned above we
want to access the memory via the cache whenever possible� We need to use the
MMU to mark the blocks of RAM as being cacheable� This is necessary since
we use memory mapped I
O� like UARTS and FPGA� For these addresses no
cache and write bu�ers can be used� Consequently we subdivide the memory in
pages of � Mbyte and associated each of them with two access types� cacheable
or non cacheable� For details on how this can be implemented we refer to ���
and ���� The MMU table and caches are initialized during the startup phase�

Since the processor has two caches� one for data and one for the instruction
�Harvard Architecture�� each time that instructions are handled in the data
cache� the HKernel has to �ush both caches to ensure that the instructions
copied will reside in memory and not in the data cache� This happens every

�



200Hz generated from FPGA

Reset

Undefined Instruction

Software Interrupt

Abort (prefetch)

Abort(data)

reserved

IRQ

FIQ

00000000H

00000004H

00000008H

0000000CH

00000010H

00000014H

00000018H

0000001CH

NOT USED

NOT USED

NOT USED

NOT USED

Floating Point Emulation

NOT USED

UART Interrupt

NEW()00000050H

Figure ���� Interrupt Vector Table

time we load a new module� During the loading phase the body of the module
has to be executed� Therefore we have to �ush the caches to ensure that the code
e�ectively resides in RAM� The StrongARM has no instruction that completely
cleans the caches� It only has a FLUSH instruction that fully erases the cache
contents� Therefore after each module load� we need to call the procedure
CleanCache�� to ensure that each cached value is consistent with the memory
locations referenced�

DEFINITION HKernel�

PROCEDURE CleanCache���

END HKernel�

�



Chapter �

The File System

The �le system implementation is similar to the standard Oberon ���� �le sys�
tem� There are only two di�erences� First� the �les stored in the RAM disk can
be made persistent� i�e� moved to the ROM disk� These �les cannot be deleted�
nor can they be written� Second� the �le system can access the host �le system�
reading �les from and writing �les to the host�

The �le system uses � Kbyte sectors� and the maximal length of a �le is
� Mbytes� This is not really a restriction since the RAM disk is only � Mbytes�

Every �le on the RAM and ROM disks have a mark value �HeaderMark�
stored in the header� This value allows the �le system to scan the disks during
startup to �nd previously stored �les� The �les found are inserted in the direc�
tory structure and the sectors used are marked as used in the sector allocation
table�

��� The RAM Disk

The following text is the de�nition of the HFiles interface for �les resident in
the RAM disk�

DEFINITION HFiles�

CONST

HeaderMark � 	
BA��D
�H�

TYPE

File � POINTER TO RECORD

name� ARRAY �� OF CHAR�

END�

Rider � RECORD

eof � BOOLEAN�

END�

PROCEDURE Old�VAR name� ARRAY OF CHAR�� File�

PROCEDURE New�VAR name� ARRAY OF CHAR�� File�

PROCEDURE Length�f� File�� INTEGER�

PROCEDURE Register�f� File��

PROCEDURE Close�f� File��

	



PROCEDURE Purge�f� File��

PROCEDURE Delete�f� File��

PROCEDURE Set�VAR r� Rider� f� File� pos� INTEGER��

PROCEDURE Pos�VAR r� Rider�� INTEGER�

PROCEDURE Read�VAR r� Rider� VAR ch� CHAR��

PROCEDURE Write�VAR r� Rider� ch� CHAR� VAR res� INTEGER��

PROCEDURE RemoteReadFile�VAR name� ARRAY OF CHAR�� File�

PROCEDURE RemoteWriteFile�f� File��

END HFiles�

��� The ROM Disk

The �les stored in the FlashROM memory can be used like normal �les� How�
ever� as these �les are marked as read only� it is not possible to change them�
nor to delete them� The only way to delete a �le from the ROM disk is to
completely erase the ROM disk� thus erasing every �le previously stored in the
ROM� This is necessary since the FlashROM does not support erasing small
portions of the ROM� The ROM disk is ��� Kbytes in size� since the other half
of the ROM is used for the bootloader� FPGA bitstream and core software�

DEFINITION HFiles�

PROCEDURE MakePersistent�VAR f� File��

PROCEDURE ReadOnly�f� File�� BOOLEAN�

PROCEDURE ResetROMDisk���

END HFiles�






Chapter �

Input and Output

��� Introduction

Olga

Battery
Monitoring

GPS DataLink Receiver

Multiplexer

ServosNiCd 24V
Battery

NiCd 4.8V
Battery

Laser MeterCompassRotorSensor

3 Gyros

3 Acc.

Temperature

DataLink

Switch

Monitoring
Computer

Development
Computer Remote ControlGPS

Helicopter System

Computer Box

Ground System

Figure ��� shows how the Olga computer is connected to the Helicopter and
which signals have to be generated and read by the Olga system� There are four
types of signals�

�



� Analog signals� generated by the inertial unit� a device with three gyro�
scopes� three accelerometers and a temperature sensor� The temperature
sensor is needed to compensate the temperature drift of the accelerome�
ters�

� PWM� signals� are the input signals of the servos used to control the
position of the main rotor �� servos�� the tail rotor �� servo� and the engine
�� servo�� The PWM signals are also generated by the Pilot receiver�
These signals are needed in case of am emergency� to allow the pilot to
get back the control of the helicopter in dangerous situations� The signals
can be read by Olga� in order to have a smooth transition from auto pilot
to human pilot and vice versa�

� The third type of signal are the four RS���� UART lines used for the on�
board GPS� the compass� the altimeter sensor� and DataLink� The latter�
is the �umbilical cord� to the ground� At startup teh Datalink is used to
start the auto pilot system� During autonomous �ight it is used to log
data on the ground� and to send the di�erential correction messages to
the on�board GPS system�

� The latter type of signals are pure Digital I
O used for various switches�

��� Analog to Digital Converters

The Oberon module ADC implements the interface to the analog converters�
Two MAX��� converters are used with a ���bit resolution and with � input
channels each� The procedure Read initiates a conversion on the speci�ed chan�
nel �� �� ��� and polls the ADC channel until it has �nished the conversion� This
takes between � �s and � �s� Thereafter it reads the converted data� The other
procedures read directly from the appropriate channel� �lters and transform the
read voltage into the required unit� For instance the procedure Temperature
returns the temperature in degrees Celsius� Further information and details on
the chip are contained in ����

The procedure Temperature implements the following low�pass �lter�

temp �� ����
 � temp � ����� � sensortemp

The procedure MotionPak transforms the input data into m�s� and into
grad�s� Moreover� since the accelerometers are temperature sensitive� their
output voltages have to be adjusted based on the current temperature� These
are the equations used for the transformations of the gyros and accelerometers�

omegax �� scaleox � sensorgyrox�

oemgay �� scaleoy � sensorgyroy�

omegaz �� scaleoz � sensogyroz�

accx �� ax� � temp� � ax� � temp � ax� � ax� � sensoraccx�

accy �� ay� � temp� � ay� � temp � ay� � ay� � sensoraccy�

accz �� az� � temp� � az� � temp� az� � az� � sensoraccz�

�
Pulse W ith Modulation

��



The values scaleox� scaleoy and scaleoz are the actual scaling factor from
sensor value to physical value� The values ax����ax�� ay����ay� and az����az�
compensate the temperature drift of the accelerometers� These values were
computed on the basis of measurements� taken in a special oven�

DEFINITION ADC�

PROCEDURE Read �channel� INTEGER� VAR analog� INTEGER��

PROCEDURE Temperature ��� REAL� �� C ��

PROCEDURE Battery ��� REAL� �� V ��

PROCEDURE MotionPak �VAR ox� oy� oz�

ax� ay� az� REAL�� �� rad�s � m��s�s� ��

PROCEDURE SetMPOffset �oxoff� oyoff� ozoff�

axoff� ayoff� azoff� REAL�

END ADC�

��� Pulse Width Modulation and Rotor
Frequency

The servos are the actuators that actually control the helicopter� There are
� servos � one for the engine� one for the yaw �tail rotor�� the other four �

for pitch� roll and collective �main rotor�� Their input signals are pulse width
modulated �PWM�� These signals come from a multiplexer �see Figure ���� that
switches the PWM signals generated by a radio receiver with the PWM signals
generated from the auto pilot computer� For development purposes we need to
be able to read the signals of the radio receiver in order to smoothly change
from the pilot control to the auto pilot�

These functions are implemented in an FPGA� a Xilinx XC���� ����� In the
FPGA we implemented � PWM generators� The Lola ���� speci�cation and the
design are contained in Appendix A� To implement and program the FPGA we
used the Trianus and Hades systems� These tools are described in detail in ���
and �
��

The PWM signal is a pulse with a frequency of about �� Hz �see �gure
����� The pulse length is the relevant signal information and varies from � ms
to � ms� The servo accepting this signal positions the actuator proportionally
to the signal length� The main circuit is a counter that counts �� ms� Actually
since the clock frequency is ����� kHz we need to count to ���
 with a ���
bit counter� The PWM generator is simply a comparator that resets a �ip��op
when the counter reaches the desired pulse length� Thereafter� when the counter
starts the next cycle� it will reset the �ip��op� The number of FPGA cells used
for this purpose is ��� of the ���� available� that is less than ���

The FPGA also contains � PWM inputs and a rotor frequency timer �RFT��
The latter is similar to a PWM signal� but instead of counting the length of the
pulse� the circuit measures the length between pulses� The main clock is �����
kHz� therefore at least � bits are needed to cover the maximal length of a PWM
pulse of � ms� The maximalpulse length is ���������kHz� � �����ms� Logically
the RFT needs a larger number of bits� Since we suppose a maximal period of

�one of them is redundant

��



ra
di

o 
re

ce
iv

er

M
ux

Switch

6 Pilot PWM

6 
A

ut
op

ilo
t P

W
M

6 Servo Motors

Board Computer

Figure ���� Multiplexer

1ms

2ms

15-20ms

Figure ���� Pulse Width Modulation Signal

about � second we need at least �
 bits� At full speed the rotor turns at ����
RPM� Since the sensor generates � pulses per rotation the minimal value is be
about �	 ms� That means that �� bits are used under normal �ight conditions�
Even in this case the number of cells used is very small� ��
�

The procedure PWMIn reads the width of the speci�ed channel and trans�
forms it into microseconds� Similarly the procedure Rotor returns a third of
the rotation period� The procedure PWMOut sets the length of the generated
PWM pulse� The last two procedures return the position of � switches used
for the switching of the PWM signals on the multiplexer board� These two
procedures reside in this module since they are actually PWM signals sent by

��



the pilot transmitter and decoded by a multi�switch decoder�

DEFINITION Servo�

PROCEDURE PWMOut�channel� pwm� INTEGER�� �� us ��

PROCEDURE PWMIn�channel� INTEGER� VAR pwm� INTEGER�� �� us ��

PROCEDURE Rotor�VAR period� INTEGER�� �� us ��

PROCEDURE Switch���� BOOLEAN�

PROCEDURE Switch���� BOOLEAN�

END Servo�

The FPGA also holds the circuitry necessary for the generation of a ��� Hz
interrupt� This circuit is a simple counter operating at a frequency of �����
kHz� therefore the counter counts up to ���� ��� bits��

The complete implementation on the FPGA takes ��� cells� which is about
�	� of the available space� We plan to port more functionality to the available
space in the future� Possible functionality could be the UART implementation�
digital �lters or even some control function� Some feasibility tests have already
been done with a UART implementation�

��� Serial Communication

The UART used is a Philips SC�
L���� This complex� low�power� and power�
ful chip provides � parallel UART channels� The module HKernel implements
its driver since it needs the serial communication to down�load modules after
startup�

To access a UART channel it has to be initialized with the procedure Start�
This initializes an input bu�er of ��� characters and con�gures the channel with
the parameters MR�� MR� and MR�� CSR � for the meaning of these values
we refer to ����� Moreover� the interrupt on receive is activated� On the other
side� the procedure Stop breaks the communication and disables the interrupt
for that channel� However� the software bu�er is accessible and contains the
characters received until the Stop routine was called�

When a channel is activated with the routine Start� the UART is ready to re�
ceive and transmit bytes via the procedures Send and Receive� Furthermore� the
procedure Available returns the number of characters deposited in the channel
input bu�er�

Since the receivers of the UART are asynchronous we need to implement an
interrupt handler� The UART interrupt request generates a fast interrupt on
the StrongARM which allows a very fast response to the request� The current
implementation needs less than ��� �s� To achieve such a speed the handler has
to be as simple as possible� but it also must be able to handle every kind of
interrupt request� The UART can generate di�erent kinds of interrupt requests
but we allow only two types of interrupts� receive with errors and receive without
errors �see ������ Furthermore� when an interrupt request arrives� the handler
must acknowledge the request and �nd the request source �the channel that
generated it�� Then it has to check if the requester is really ready to deliver the
information in case of a receive without error interrupt� If an interrupt of the

��



type receive with errors is detected� the handler not only has to acknowledge the
interrupt as for the errorless case but also must eliminate the source of the error�
Usually reading the incorrect byte from the UART is enough� The handler is
installed during initialization�

DEFINITION HKernel�

PROCEDURE Start�channel� INTEGER� MR	� MR�� MR�� CSR� CHAR��

PROCEDURE Stop�channel� INTEGER��

PROCEDURE Send�channel� INTEGER� ch� CHAR��

PROCEDURE Receive�channel� INTEGER� VAR ch� CHAR��

PROCEDURE SendInt�channel� INTEGER� int� INTEGER��

PROCEDURE ReceiveInt�channel� INTEGER� VAR int� INTEGER��

PROCEDURE SendString�channel� INTEGER� VAR s� ARRAY OF CHAR��

PROCEDURE ReceiveString�channel� INTEGER� VAR s� ARRAY OF CHAR��

PROCEDURE Available�channel� INTEGER�� INTEGER�

END HKernel�

��� Digital I	O

The helicopter needs some digital I
O for the control of external devices� for
example a grabber� The UART described in the previous section provides four
general digital I
O per channel� At present four of them are connected to LEDs�
These are used for the visulazation of system states� The other �� are free for
future use�

The procedure IOPC con�guresthe I
O pin of the four channels for input
or output mode� OP writes the four output pins and IP reads the value of the
four pins� Furthermore� the FPGA has a number of connected but unused pins
that could easily be adapted to implement digital I
O�

DEFINITION HKernel�

PROCEDURE IOPC�channel� INTEGER� ch� CHAR��

PROCEDURE OP�channel� INTEGER� x� CHAR��

PROCEDURE IP�channel� INTEGER� VAR x� CHAR��

END HKernel�

��
 FPGA initialization

Since the FPGA used is a SRAM�based device� it has to be con�gured during
the startup phase� We chose not to use a serial boot ROM for the FPGA� since
this chip would be used only at startup and for nothing else� Our solution�
instead is to con�gure the FPGA explicitly from the StrongARM�

We implemented two modes in which the FPGA can be con�gured� The
�rst mode is similar to the down�loading of a module� The main di�erence is
that the con�guration bitstream is then copied into the SRAM of the device
rather than that of the RAM memory� Such a down�load takes approximatively

��




 seconds since the bitstream size is about ��� Kbytes and the serial link speed
is ��� Kbauds� This solution is acceptable for the tests run in the lab� but not
in the �nal implementation�

The second mode is a more e�cient solution� The bitstream �le is stored in
the FlashROM� Right after startup the HKernel calls the procedure FPGAInit
that reads the bitstream �le and copies it to the FPGA con�guration memory�
This takes only about �� ms�

��



Chapter �

The Linker�Loader

The Linker
Loader strategy adopted is the same as in the original Oberon op�
erating system ����� The modules needed are loaded and linked dynamically on
the target system� The helicopter computer does not have any user interface
devices like keyboard� display or mouse� Therefore all the development has to
be done on a host cross�platform� The host holds the development environment
�a PC running the Oberon System� while the cross�compiled programs have to
be down�loaded via serial link to the target system� The host�target protocol is
discussed in the next chapter� at �rst we will focus on the method in which the
object �le created on the host platform and transfered to the system is linked�
loaded and consequently made accessible to the rest of the system�

The HKernel holds a list of the modules loaded� the module data structure
is as follows�

Module � POINTER TO RECORD

size� key� INTEGER�

name� ARRAY �� OF CHAR� �� module identification ��

code� entrytab� ptrtab� cmdtab� importab� INTEGER� �� address ��

refcnt� INTEGER� �� reference count ��

link� Module �� linked list ��

END�

We adopted the same data structure as that used in the Oberon� ��� system
for the IT computer� i�e� a prototype of a network computer developed by Digital
with a StrongARM processor� When a module is loaded� it is placed in the
heap memory� After the linking process� the module structure looks like the
one shown in Figure ���� The command table holds the links to the commands
�parameterless procedures� declared within the module� The pointer table is
always empty� since no garbage collector is implemented� The entry table holds
the addresses of the exported procedures� Note that position � of the table holds
the entry address of the module body�

��



Header

Global Var.

Code

Ptr. Table

Cmd. Table

Entries

Import Table

size
key
name

code
entry
ptrtab
cmdtab
imptab
refcnt
link

1
0

2
3
4
5

Proc1

Proc2

0
1
2
3
4
5

Proc3

Figure ���� Module Structure

The main procedures used for loading and linking are�

DEFINITION HModules�

PROCEDURE FindModule�VAR name� ARRAY OF CHAR� VAR m� Module��

PROCEDURE ReceiveMod�VAR name� ARRAY OF CHAR� VAR m� Module��

PROCEDURE CallP�m � Module� VAR pname� ARRAY OF CHAR��

END HModules�

FindModule searches in the list of modules loaded for the module with the
speci�ed name� If it �nds it� it returns its pointer� otherwise NIL� CallP calls
the command named pname of the module m� The procedure ReceiveMod is
responsible for the recursive down�loading process� The FindModule is used to
test whether the requested module is already linked� If it is not� then the host is
requested to send the module� Then the Module is linked and its body executed�

��� Linking Process

When the module is completely loaded and placed in memory the external calls
have to be replaced by real relative addresses� This is done with �xup chains�

�	



more precisely� one chain per imported module� The �xup chain is simply a
linked list of all external calls of a module�

The linking process traverses these �xup chains and replaces the o�set of the
next external call with the relative jump o�set for the called procedure� Since
the system does not support the import of variables� there are only external
procedure calls that have to be �xed� Furthermore� the reference counter is
initialized with zero and incremented by one each time the module is imported
by another one� This is necessary in order to allow a safe unloading of modules�

�




Chapter �

Host Protocol

This chapter describes the protocol used for the host to target and target to
host communications� This protocol is needed during the startup phase to
establish a means of communication� After the startup process and after the
HKernel module has initialized everything� the main module HelyOS enters the
endless procedure Loop� This procedure waits for messages coming from the
serial port and interprets them� On the other hand the host has an Oberon task
installed �see ����� that polls the serial port and waits for commands arriving
from the target� When the auto pilot takes control of the helicopter the serial
cable is disconnected and the auto pilot computer communicates via the radio
communication protocol� described in another technical report ����


�� Host to Target

The target accepts two type of message� The command format is�

CallProc � sync�� CP�� name len�� fchar��g parameter����

LoadMod � sync�� MD�� name�

The �rst command tells the target to execute the command speci�ed with
the string name� The name string has to have the structure x�y where x is the
anme of the module and y the parameterless procedure name of the command
to be executed� Furthermore it is possible to give a parameter string to the
procedure called via the �eld parameter� This string can be accessed on the
target via the GetParameter procedure� If the module is not yet loaded the
target automatically requests the module from the host �see next section�� The
second command tells the system to load a module and as in the case above
the module is down�loaded only if it is not yet in the target� The sync value is
a synchronization sequence that allows the target to synchronize with the byte
stream� eliminating possible transmission errors�


�� Target to Host

The host accepts the followingmessages from the target system� The underlined
words are the responses from the host� The sync sequence� as in the host to

��



target case� is a synchronization sequence that allows the host to synchronize
with the byte stream�

FileRequest � sync�� FR�� name � len�� fchar��g checksum�� j �� ��

FileSend � sync�� FS�� name len�� fchar��g�

FileSendPacked � sync�� FSP�� name len�� fpckn�� fchar��g chk��g �ACK��
j NACK����

Log � sync�� LOG�� �LN�� j STR�� string j CH�� ch�� j INT�� int�� j HEX��
int�� j FLOAT�� real�� j CLEAR����

ModuleStatus � sync�� MS�� modname key�� adr�� fclass�� form�� adr�� x��g
�FFX�

With the �rst two messages the target can load a �le from the host or write
a �le on the host� The HFiles module uses this protocol to access the remote �le
system� The �le request message includes a checksum� This is necessary since
a transmission error during the transfer of an object �le could compromise the
integrity of the whole system� On the other hand� the �le transfer from target to
host is more critical� since the host system is not a real�time system and cannot
guarantee a real�time response� Therefore there are two ways for sending a �le�
the �rst being a straight�forward sending of data via the serial link� This works
very well for small �les and is very fast� If the �les are larger� the host system
cannot sustain the data transfer and may lose some of the incoming bytes� To
overcome this problem we implemented a handshake protocol that slows down
the e�ective transfer rate� but ensures a correct transfer of large �les� The �le
is subdivided in packets with a checksum and a packet number� In this way the
host system can check errors in the packets received and� in case it detects an
error� it can request the re�sending of a packet�

The Log message is used by the HLog module to display information in the
Target Log Viewer � a special Oberon Viewer ���� opened at startup on the host
system�

The last message is used for debugging� See the next section for details�


�� Debugging

The user can analyze the status of all global variables of a speci�ed module�
with the HelyOS command ShowStatus� When the HKernel wants to display
such information it requests the host system to send the relative o�sets� type
and name of all global variables� The host system can access this information
thanks to the symbol �le extensions stored on the host system� For more details
on the �le structure see �����

��



Chapter �

Real�Time Scheduling

In general real�time operating systems the scheduling of the di�erent system
tasks has to be versatile� robust and must run transparently with as little over�
head as possible� In our case� however� we have an undeniable advantage� we
know the kinds of jobs needed by the auto pilot application� Therefore we can
focus and optimize our strategy for this application� We are convinced also that
the implementation of a simple and clear strategy� has the side e�ects of a more
robust� faster and smaller code size implementation�

The stategy usually adopted is the use of coroutines as the multitasking
entity� Our approach �see ������uses subroutines as the multitasking entity in�
stead� The scheduler starts the subroutine tasks in a �xed and prede�ned order�
according to their priority� The task may be preempted by other tasks� i�e� sus�
pended but� in opposition to the coroutine approach� they run to completion�

��� Tasks and Their Priority

As mentioned above an undeniable advantage is that we can assign priorities
o��line and choose the optimal strategy� We adopt a rate�monotonic priority
assignment strategy �	�� i�e� the priority of the task is proportional to its request
rate� This �xed priority strategy simpli�es the scheduling algorithms� and since
the tasks are started in a deterministic way� the behavior of the system is easy
to predict� Moreover� this strategy has been proven to be the optimal solution
for �xed priority assignment �see �	���

We have � types of tasks running in the system� tasks with ��� Hz rate� tasks
with �� Hz rate and background tasks� Tasks with ��� Hz rate are denoted as
Synchronous High Tasks and have a high priority� tasks with �� Hz rate are
called Synchronous Low Tasks and have a medium priority� while background
tasks are just Tasks and have a low priority�

The system implements four phases ��� �� �� �� of � ms each� After phase
� the system starts again from phase �� High synchronous tasks are started
at the beginning of each phase and preempt any tasks running with a lower
priority� Low synchronous tasks� on the other hand� are started every �� ms
when all the high priority tasks are completed and preempt all background tasks�
The phase in which the task is started is given by the parameter startphase in
InstallLowSync�

��



A synchronous task can implement any complex computation� The only
limitation is that it has to terminate before another synchronous task of the
same priority can be started� This means that to guarantee the integrity of the
system the computation time of all high sync tasks cannot be greater than � ms�
and similarly the computation time of all the low sync tasks cannot be greater
than �� ms�

The background tasks are similar to the synchronous ones� the only di�erence
being that they are started as soon the processor has terminated the handling
of all synchronous tasks� The background tasks have the lowest priority� and
can be preempted by every synchronous task�

DEFINITION HelyOS�

TYPE

TaskCode � PROCEDURE �me� INTEGER���

Task � POINTER TO RECORD

proc� TaskCode�

name� ARRAY �� OF CHAR

END�

SyncCode � PROCEDURE �phase� INTEGER��

SyncTask� POINTER TO RECORD

proc� SyncCode�

name� ARRAY �� OF CHAR

END�

PROCEDURE InstallHighSync�s� SyncTask� VAR name� ARRAY OF CHAR��

PROCEDURE RemoveHighSync�s� SyncTask��

PROCEDURE InstallLowSync�s� SyncTask� VAR name� ARRAY OF CHAR�

startphase� INTEGER��

PROCEDURE RemoveLowSync�s� SyncTask��

PROCEDURE Install�t� Task� VAR name� ARRAY OF CHAR��

PROCEDURE Remove�t� Task��

PROCEDURE StartSync�

PROCEDURE StopSync�

PROCEDURE ExecTask�

END HelyOS�

��� Implementation and Performance

The scheduler implementation uses re�entrant interrupts� An interrupt signal
is generated every � ms� which starts the interrupt handler Scheduler� This
handler is the actual scheduler� It saves the processor status register �SPSR��
the general purpose registers �R���R���� the FP registers �FP���FP	� and in�
crements the phase counter �modulo ��� The other registers R��� R�� and R��
are special registers that are saved by the StrongARM processor automatically
�see ����� This is the prolog phase� Thereafter the scheduler has to enable the
interrupt� since the processor disables it automatically during the interrupt call�
The scheduler then starts the synchronous high and low priority tasks� When
all the started tasks are completed� the interrupt handler stops the re�entrant
interrupt to protect the epilog� In the epilog phase� it restores the registers�

��



the processor status and returns to the interrupted process� a background task
or a synchronous low task� With the return the interrupts are automatically
re�enabled�

The interrupt overhead is less then 
 �s� and is mainly due to the memory
access time needed to store all the registers� Therefore one of the optimizations
is to reduce this overhead by reducing the number of registers neededing to be
saved� To do so the emulation strategy was changed� Normal registers are used
for the emulation of the �oating�point registers� reducing the number of register
to be saved to the �� general purpose registers and the processor status�

MODULE HelyOS�

PROCEDURE ��� Scheduler�

VAR

fpe� ARRAY �� OF INTEGER� �� local FP Register ��

lr� spsr� localphase� INTEGER� list� SyncTask�

BEGIN

�� ��������������� Prolog ������������������� ��

STPSR��� spsr�� ��store SPSR ��

FPE�SaveFPR�fpe�� �� save FP register ��

PUT�HKernel�FPGAINTACK� 	�� �� clear the fpga�s int request ��

phase �� �phase � �� MOD ��

localphase �� phase�

�� ��������������� Scheduler ���������������� ��

SetIRQ� �� enable re�entrant IRQ ��

�� start all sync high priority task ��

list�� synchigh�

WHILE list � syncguard DO

IF list�startphase � Always THEN list�proc�localphase� END�

list �� list�next

END�

�� start low priority tasks ��

list�� synclow�

WHILE list � syncguard DO

IF list�startphase � localphase THEN list�proc�localphase� END�

list �� list�next

END�

ResetIRQ� �� disable re�entrant IRQ ��

�� ���������������� Epilog ������������������ ��

FPE�RestoreFPR�fpe��

LDPSR��
H� spsr� �� SPSR �� spsr ��

END Scheduler�

END HelyOS�

��



Time(ms)50 10 15 20 25 30

Priority

Back-
ground

Low

High

Input

Navigation

Logger

Figure 	��� Scheduling Example

��� Example

Figure 	�� shows a possible con�guration of the system and its timing� The Input
high sync task is started in each phase �every � ms� and has a high priority�
The Navigation low sync task is started only in phase � and has a lower priority�
Thus this task can be preempted by the Input task� The Logger is a background
task that runs with the lowest priority� It is preempted by every synchronous
task�

��



Chapter 	

Floating�point Emulation

The emulator� is completely integrated into the system� and its execution is
transparent to the applications� The StrongARM processor generates an un�
de�ned instruction trap whenever its decoder decodes an unknown instruction�
The unde�ned instruction trap handler decodes the unknown instruction and�
if it is a �oating�point instruction� executes it�

We chose to be compatible with the existing ARM �oating�point instruction
set and adopted the IEEE 	�� �oating�point format with �� bits� Internally the
emulator emulates 
 �oating�points registers� Each register is represented with

 bytes� � for the mantissa and � for the exponent�

��� Look
ahead Optimization

Since a �oating�point instruction is usually followed by more FP instructions�
the trap handler can reduce the overhead of the unde�ned instruction trap� if
instead of a return it directly tries to decode the following instruction� Such a
trap handler is slightly more complex ��� assembler instructions more� but ���
faster than the normal handler without this look�ahead feature� See appendix
B for more details on the number of �oating�point instructions needed and the
number of sequential �oating�point instructions�

��� Performance

Since the control of a helicopter uses �oating�point operations very frequently�
performance of such an emulation is a central concern in our project� The per�
formance achieved with the current look�ahead solution is about ��� MFLOPS�

�The emulator was written by N� Wirth

��



��� Floating
point Library

To completely eliminate the trap overhead� the compiler was changed to call the
�oating�point library directly� instead of generating a �oating�point instruction�
This reduces the overhead of a context switch for each instruction� Moreover�
the �oating�point registers are normal integer registers� thus reducing memory
accesses� This method is about � times faster than the emulation with traps�
Its performance is ��� MFLOPS�

��



Chapter 


Numerical Support

��� The Math Module

The Math module implements the following standard functions� The imple�
mentation takes advantage of certain features of the �oating�point emulation
routines�

DEFINITION Math�

PROCEDURE arctan �x� REAL�� REAL�

PROCEDURE cos �x �REAL�� REAL�

PROCEDURE exp �x� REAL�� REAL�

PROCEDURE ln �x� REAL�� REAL�

PROCEDURE sin �x� REAL�� REAL�

PROCEDURE sqrt �x� REAL�� REAL�

END Math�

��� The MatLib Module

This module implements matrix operations� The operations take advantage of
the RIDER concept of the OberonSA compiler �����

DEFINITION MatLib�

PROCEDURE AddMat �VAR a� b� c� ARRAY OF REAL� n� INTEGER��

PROCEDURE InvertMat �VAR a� ARRAY OF REAL� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE ScalarMult �VAR a� ARRAY OF REAL� x� REAL�

VAR b� ARRAY OF REAL� n� INTEGER��

PROCEDURE ScalarProd �VAR a� b� ARRAY OF REAL� n� INTEGER�� REAL�

PROCEDURE SubtractMat �VAR a� b� c� ARRAY OF REAL� n� INTEGER��

PROCEDURE TransposeMatrix �VAR a� b� ARRAY OF REAL�

rows� cols� INTEGER�

END MatLib�

�	



Chapter ��

The Startup Process

The �rst problem that has to be solved in a new system is how to start it� This
may seem to be a small detail� but if it is not solved in a clean manner from
the beginning it can turn into be a painful problem later� In this project we
adopted the same strategy as that used in the Ceres System ����� a small piece
of code �less than ��� instructions� resident in ROM is executed after each reset
or startup� It is responsible for loading the system core via the serial link or
from the ROM and jumps to its module entry point� After some initialization�
the bootloader tests a pin of the UART chip to decide if it will download the
core via the link or from the ROM� If the boot pin is high then the ROM is
selected� otherwise the serial link is used as source for the core� Once the core is
loaded and started� it performs the initialization of memory and devices� then it
starts the procedure HelyOS�Loop which waits for commands sent via the serial
link� The protocol is the same for both types of download� In EBNF notation�

Boot � fsize�� adr�� fword��gg ��� startadr���

In case of a serial download� the host computer connected via the serial link
is responsible for this unidirectional protocol� It sends a sequence of blocks
of the size size that is then copied to the memory starting from the absolute
address adr� The last block is characterized by the size � � and terminates the
protocol with startadr as the absolute entry address of the code to be executed�

The time needed to download the full system via serial link� i�e� downloading
the software core� initializing the FPGA and all the devices� down�loading all
the base modules and starting the control application� is less than �� seconds�

�




Chapter ��

HelyOS Commands

The module HelyOS exports the following commands� As mentioned above�
some of these commands accept a parameter string sent from the host system
to the target via the call message�

DEFINITION HelyOS�

PROCEDURE ShowModules�

PROCEDURE ShowHeap�

PROCEDURE ShowCommands�

PROCEDURE ShowStatus�

PROCEDURE Free�

PROCEDURE Directory�

PROCEDURE RemoteRead�

PROCEDURE RemoteWrite�

PROCEDURE MakePersistent�

PROCEDURE ResetROMDisk�

PROCEDURE ShowTasks�

PROCEDURE StartSync�

PROCEDURE StopSync�

PROCEDURE RESET�

END HelyOS�

The command ShowModules lists all loaded modules� their size and their
reference count� ShowHeap lists all free heap blocks and their sizes� ShowCom�
mands lists the names of all commands implemented by a module� ShowStatus
shows the value of all global variables of a module� Last but not least� Free
unloads a module�

��



The other commands are used to interact with the �le system� RemoteRead
and RemoteWrite allow the Olga computer to access the host �le system�
The MakePersistent command moves a �le from the RAM disk to the ROM
disk� Since the ROM disk is implemented in a FlashROM we cannot selec�
tively delete �les from the disk but can only delete the complete structure with
ResetROMDisk�

The task system can be started or stopped with the StartSync and StopSync
commands� A list of all installed tasks can be displayed with the command
ShowTasks� The system can be restarted with the RESET command�

��



Chapter ��

HLog Module

This module allows the target system to write simple strings on the host system�
The host system automatically opens an Oberon Viewer� where all the messages
sent by the target are displayed�

DEFINITION HLog�

PROCEDURE Ch �ch� CHAR��

PROCEDURE Clear ���

PROCEDURE Hex �h� LONGINT���

PROCEDURE Int �i� LONGINT��

PROCEDURE Ln ���

PROCEDURE Real �r� REAL��

PROCEDURE Str �VAR s� ARRAY OF CHAR��

PROCEDURE Time ���

END HLog�

��



Appendix A

FPGA

This is the Lola ���� program that describes the hardware implemented in the
FPGA� The FPGA was implemented using the Trianus ��� and Hades �
� tools�
Figure A shows the placement of the varius circuits�

MODULE Servo� �� ms� �
 Jul 
� ��

�� Note� SR not used since Trianus doesn�t

accept loop connections without labels

��

�� GClk � �	MHz� G� � ���
��MHz� G� � ��	�� KHz ��

IN

INTACK�� GClk� G�� G�� RTF � BIT�

PWMIn � ��� BIT�

OUT

INT�� F�		�� F�	�� Clk � BIT�

PWMOut � ��� BIT�

VAR

pscale� pscalec� ��� BIT�

freq�		� freq�		c� ���� BIT� F�		rst� � BIT�

intsr� BIT�

cntr�	� cntr�	c� ���� BIT� cntr�	rst� � BIT�

outcmp� oactive� syncoactive� pwmsr� pwmrs� ��� BIT�

outreg� syncoutreg� ����
� BIT�

incntrst�� incntsync� ��� BIT�

incnt� incntc� inreg� ����
� BIT�

rtfrst�� rtfsync� BIT�

rtfcnt� rtfcntc� rtfreg� ��
� BIT�

BEGIN

��



�� �������������� prescaler ���������������������������������������������

pscale�	 �� REG�G�� �pscale�	�� pscalec�	 �� pscale�	�

pscale�� �� REG�G�� pscale�� � pscalec�	��

pscalec�� �� pscalec�	�pscale���

pscale�� �� REG�G�� pscale�� � pscalec����

pscalec�� �� pscalec�� � pscale���

pscale�� �� REG�G�� pscale�� � pscalec����

pscalec�� �� pscalec�� � pscale���

Clk �� pscale���

�� �������������� Interrupt generator ������������������������������� ��

freq�		�	 �� REG�G�� �freq�		�	 � F�		���

freq�		c�	 �� freq�		�	�

FOR i �� � �� �	 DO

freq�		�i �� REG�G�� �freq�		�i � freq�		c�i � ��� � F�		���

freq�		c�i �� freq�		�i � freq�		c�i � ���

END�

�� freq�		����� �		Hz Pulse ��

F�		rst� ���freq�		�	 � �freq�		�� � �freq�		�� � �freq�		�� �

�freq�		�� � �freq�		�� � �freq�		�� � freq�		�� �

freq�		�
 � freq�		�
 � �freq�		��	�

F�	� �� cntr�	rst� � �� �	 Hz Pulse ��

F�		� �� F�		rst�� �� �		Hz Pulse ��

��INT� �� SR��F�		�� �INTACK��� ��

INT� �� ��INTACK� � intsr��

intsr �� ��F�		� � INT���

�� �������������� pwm outputs ���������������������������������������� ��

�� main counter �

�	ms � ��	��kHz � ��	
 �� if cntr � ��	� restart cntr

��

cntr�	�	 �� REG�G�� �cntr�	�	 � cntr�	rst���

cntr�	c�	 �� cntr�	�	�

FOR i �� � �� �� DO

cntr�	�i �� REG�G�� �cntr�	�i � cntr�	c�i���� � cntr�	rst���

cntr�	c� i �� cntr�	�i � cntr�	c�i���

END�

cntr�	rst� �� �cntr�	�	 � �cntr�	�� � �cntr�	�� � �cntr�	�� �

�cntr�	�� � �cntr�	�� � �cntr�	�� � �cntr�	�� �

�cntr�	�
 � cntr�	�
 � cntr�	��	 � cntr�	��� � �cntr�	����

�� � pwm outs ��

FOR i �� 	 �� � DO

oactive�i �� REG�G�� MUX�cntr�	rst��

REG�GClk� syncoactive�i�� oactive�i���

FOR j �� 	 �� 
 DO

outreg�i�j �� REG�G�� MUX�cntr�	rst��

��



REG�GClk� syncoutreg�i�j�� outreg�i�j��

END�

outcmp�i �� �outreg�i�	 � cntr�	�	� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�
 � cntr�	�
��

�� PWMOut�i �� oactive�i � SR��cntr�	rst�� �outcmp�i� ��

pwmsr�i �� ��cntr�	rst� � pwmrs�i�� pwmrs�i �� ��outcmp�i � pwmsr�i��

PWMOut�i �� oactive�i � pwmsr�i�

END�

�� �������������� pwm inputs ����������������������������������������� ��

FOR i �� 	 �� � DO

incnt�i�	 �� REG�G�� �incnt�i�	 � PWMIn�i� � incntrst��i��

incntc�i�	 �� incnt�i�	 � PWMIn�i�

inreg�i�	 �� REG�G�� MUX�incntrst��i� incnt�i�	� inreg�i�	���

FOR j �� � �� 
 DO

incnt�i�j �� REG�G�� �incnt�i�j � incntc�i�j���� � incntrst��i��

incntc�i�j �� incnt�i�j � incntc�i�j����

inreg�i�j �� REG�G�� MUX�incntrst��i� incnt�i�j� inreg�i�j��

END�

incntsync�i �� REG�G�� PWMIn�i��

incntrst��i �� PWMIn�i � �incntsync�i�

END�

�� �������������� rotor frequency ������������������������������������ ��

rtfcnt�	 �� REG�G�� �rtfcnt�	 � rtfrst���

rtfcntc�	 �� rtfcnt�	�

rtfreg�	 �� REG�G�� MUX�rtfrst�� rtfcnt�	� rtfreg�	���

FOR j �� � �� �� DO

rtfcnt�j �� REG�G�� �rtfcnt�j � rtfcntc�j���� � rtfrst���

rtfcntc�j �� rtfcnt�j � rtfcntc�j����

rtfreg�j �� REG�G�� MUX�rtfrst�� rtfcnt�j� rtfreg�j��

END�

rtfsync �� REG�G�� RTF��

rtfrst� �� �RTF � rtfsync�

END Servo�

��



Figure A��� FPGA Design

��



Appendix B

Helicopter System Modules

The following tables list the modules of the system� along with the code size
�column Code� in KBytes� data size �column Data� in KBytes� the number of
�oating�point instructions �column Fp�� and the number of sequential �oating�
point instructions �column Seq� Fp��� i�e instructions following other �oating�
point instructions�

Module Size Data Fp
 Seq
 Fp


ADC ��� �� ��� ��	
FPE ��� 	� � �
HelyOS ���� ��� � �
HFileDir ���� �� �
 �
HFiles ���� 	 � �
HLog ��� 	 � �
HModules �	� �� 	 �
HROM ��� 	� � �
Math ��� 	 �
� ���
MatLib 	�	 �� ��� ��
Servo ��� �� � �

Total 		�� ��� ��� ���

Table B��� Software Core Modules

Module Size Data Fp
 Seq
 Fp

BootBurner ��� 	 � �
CoreBurner �	� 	 � �
FPGABurner �	� �� � �

Total ��
� �� � �

Table B��� Utility Modules

��



List of Figures

��� Software Core � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Memory Map � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Memory Organization � � � � � � � � � � � � � � � � � � � � � � � � �
��� Interrupt Vector Table � � � � � � � � � � � � � � � � � � � � � � � � �

��� Multiplexer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Pulse Width Modulation Signal � � � � � � � � � � � � � � � � � � ��

��� Module Structure � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

	�� Scheduling Example � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� FPGA Design � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�	



Bibliography

��� M� Aeschlimann� Oberon� system for the it� Semester work� ETH Zurich�
Institute for Computer Systems� June ���	�

��� Digital Equipment Corporation� Memory Management on the StrongARM
SA�		�
 Application Note� ���
�

��� Digital Equipment Corporation� SA�		� Microprocessor Technical Refer�
ence Manual� ���
�

��� Stephan W� Gehring� An Integrated Framework for Structured Circuit De�
sign with Field�Programmable Gate Arrays� PhD thesis� ETH Zurich� ���	�

��� M� Kottmann� A computer system for model helicopter �ight control� tech�
nical memo nr� �� The auto pilot software� Technical report� ETH Zurich�
Institute for Computer Systems� February ���
�

��� M� Kottmann and J� Chapuis� Speci�cation of communications protocols�
Internal Memo�

�	� C�L� Liu and James W� Layland� Scheduling algorithms for multiprogram�
ming in a hard�real�time environment� Journal of ACM� ��������� ��	��

�
� Stefan H��M� Ludwig� Fast Hardware Synthesis Tools and a Recon�gurable
Coprocessor� PhD thesis� ETH Zurich� ���	�

��� Maxim Integrated Products� MAX	��
Max	�� Multirange� single ��V�
	��Bit DAS with 	��Bit Bus Interface� �����

���� Philips� SC��L	�� Quad UART with TTL Compatibility at ���V Supply
Voltage� �����

���� N� Wirth� Lola system notes� Technical Report ���� ETH Zurich� Institute
for Computer Systems� June �����

���� N� Wirth� Tasks vs� threads� An alternative multiprocessing paradigm�
Software�Concepts and Tools� �	������ �����

���� N� Wirth� A computer system for model helicopter �ight control� techni�
cal memo nr� �� The hardware core� Technical Report �
�� ETH Zurich�
Institute for Computer Systems� January ���
�

���� N� Wirth� A computer system for model helicopter �ight control� technical
memo nr� �� The programming language oberon sa� Technical Report �
��
ETH Zurich� Institute for Computer Systems� January ���
�

�




���� N� Wirth and J� Gutknecht� Project Oberon� Addison�Wesley� �����

���� Xilinx� XC���� Field Programmable Gate Arrays� �����

��


