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Chapter �

Introduction

This technical memo describes the software core of Olga�� The computer ar�
chitecture was described in memo nr� � ����� The whole system� except the
bootstrapping code that resides in ROM was written with the Oberon for
StrongARM compiler described in memo nr� � �����

The software core furnishes the basic functionality � device drivers� inter�
rupt handlers� memory management� debugging and linking
loading � to the
helicopter auto pilot application ���� therefore it has to be as small and as fast
as possible� We think we achieved this goal with less than �� Kbytes object code�
With the use of the new features of the compiler we were able to implement the
device drivers and memory management in an e�cient way�

The module structure in �gure ��� shows the organization of the software
core� The base module is HKernel� It implements the memory management�
UART driver and the RAM disk driver� HFiles and HFileDir modules implement
a �le system for the RAM disk and ROM disk� HModules implements the
linking
loader� HelyOS� is the main module� it implements the scheduling and
starts the command loop� This procedure then waits for incoming commands to
be executed on the target system� The ADC module reads analog values� �lters
and converts them into the desired unit� The Servo module reads the input
PWM� signal generated from the pilot transmitter and generates the output
PWM signal for the auto pilot functions� We will see afterwards in detail where
all these signals are generated and used� The module HLog writes information
to the host computer system� The FPE module implements the �oating�point
emulation� This is necessary because the StrongARM processor has no �oating�
point unit� The Math and MatLib modules are a set of e�ciently implemented
mathematical functions�

�Oberon Language Goes Airborne
�The name HelyOS and not HeliOS was chosen mainly for two reasons� one� because a

system named HeliOS� a real�time operating system for the ARM processor� already exists�

Second because when I wrote the module for the �rst time� I mistyped the name
�
Pulse W ith Modulation
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Chapter �

Memory Organization
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Figure ���� Memory Map

Figure ��� shows the four di�erent parts of the memory layout adopted� The
�rst block of 
 Mbytes is the RAM of the system� the second block of � Mbyte
is the system ROM� actually an in�system�programmable FlashROM� The third
block is used to execute the special commands for refreshing the SDRAM chips�
In the last block all the I
O locations are memory mapped� More details can be
found in the report ����� Figure ��� shows in detail how the RAM is subdivided�

��� Heap

The heap implementation is very simple� There is a linked list of free blocks�
A simple �rst��t strategy is used for the allocation of a new block� At �rst
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Figure ���� Memory Organization

sight this seems to be a simplistic solution� but we have to keep in mind that
the system will run only a single application � the controller of the helicopter �
and that a complex heap management scheme will not be needed� This is the
simplest but also the most e�ective solution in terms of code size and allocation
time� Moreover no garbage collection is implemented since the heap will be used
only for the allocation of modules and variables� The procedures that handle
the heap are�

MODULE HKernel�

PROCEDURE Alloc�VAR a� Ptr�� size� INTEGER��

PROCEDURE Release�a� Ptr���

PROCEDURE MemAvail�VAR size� INTEGER��

END HKernel�

The standard procedure NEW�� represents a call to the procedure Alloc���
Therefore there is no need to directly call Alloc� Since no garbage collection
is provided the procedure Release�� has to be called whenever a block needs
to be freed� The procedure MemAvail returns the amount of heap space still
available�

�



��� Stacks

There are four di�erent stacks� one for each mode of operation of the
StrongARM ��� that we use �supervisor� unde�ned� fast�interrupt and normal�
interrupt�� Figure ��� shows the location of the four stacks in RAM� The MMU
Table � to be explained later � is placed between the SVC Stack and the IRQ
Stack� This unusual location is due to the fact that the MMU table can be
placed only in speci�c locations in memory� Normally the processor is in Su�
pervisor Mode� We choose not to run the processor in User Mode since the
software core does not have to protect itself from malicious applications� The
other important operation modes are IRQ Mode and FIQ Mode� These are
entered when the processor starts an interrupt handler� In the �rst case this
happens in response to a timer that interrupts the processor at a frequency of
��� Hz� in the second case in response to an UART request� The fourth and
�nal mode is the Unde�ned Instruction� When and how this mode is used will
be discussed in more detail in chapter 
� The StrongARM has other operation
modes which are not used in our implementation�

��� Interrupt Vector Table �IVT�

The StrongARM uses this table to jump to the interrupt handlers� The table is
initialized during startup� An interrupt handler has to register its entry address
in the table with the InstallHandler procedure� The structure of the table is
shown in Figure ���� The compiler extends this table for the NEW�� handler�
placed at the address ��H�

DEFINITION HKernel�

PROCEDURE InstallHandler�handle� PROCEDURE��� vector� INTEGER��

END HKernel�

��� Caches

To accelerate code execution of the processor we use the on�chip caches and
memory management� The StrongARM has a �� Kbytes ���way associative in�
struction cache� a �� Kbytes ���way associative write�back data cache� a memory
management unit �MMU� and a 
�entry write bu�er� As mentioned above we
want to access the memory via the cache whenever possible� We need to use the
MMU to mark the blocks of RAM as being cacheable� This is necessary since
we use memory mapped I
O� like UARTS and FPGA� For these addresses no
cache and write bu�ers can be used� Consequently we subdivide the memory in
pages of � Mbyte and associated each of them with two access types� cacheable
or non cacheable� For details on how this can be implemented we refer to ���
and ���� The MMU table and caches are initialized during the startup phase�

Since the processor has two caches� one for data and one for the instruction
�Harvard Architecture�� each time that instructions are handled in the data
cache� the HKernel has to �ush both caches to ensure that the instructions
copied will reside in memory and not in the data cache� This happens every
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time we load a new module� During the loading phase the body of the module
has to be executed� Therefore we have to �ush the caches to ensure that the code
e�ectively resides in RAM� The StrongARM has no instruction that completely
cleans the caches� It only has a FLUSH instruction that fully erases the cache
contents� Therefore after each module load� we need to call the procedure
CleanCache�� to ensure that each cached value is consistent with the memory
locations referenced�

DEFINITION HKernel�

PROCEDURE CleanCache���

END HKernel�
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Chapter �

The File System

The �le system implementation is similar to the standard Oberon ���� �le sys�
tem� There are only two di�erences� First� the �les stored in the RAM disk can
be made persistent� i�e� moved to the ROM disk� These �les cannot be deleted�
nor can they be written� Second� the �le system can access the host �le system�
reading �les from and writing �les to the host�

The �le system uses � Kbyte sectors� and the maximal length of a �le is
� Mbytes� This is not really a restriction since the RAM disk is only � Mbytes�

Every �le on the RAM and ROM disks have a mark value �HeaderMark�
stored in the header� This value allows the �le system to scan the disks during
startup to �nd previously stored �les� The �les found are inserted in the direc�
tory structure and the sectors used are marked as used in the sector allocation
table�

��� The RAM Disk

The following text is the de�nition of the HFiles interface for �les resident in
the RAM disk�

DEFINITION HFiles�

CONST

HeaderMark � 	
BA��D
�H�

TYPE

File � POINTER TO RECORD

name� ARRAY �� OF CHAR�

END�

Rider � RECORD

eof � BOOLEAN�

END�

PROCEDURE Old�VAR name� ARRAY OF CHAR�� File�

PROCEDURE New�VAR name� ARRAY OF CHAR�� File�

PROCEDURE Length�f� File�� INTEGER�

PROCEDURE Register�f� File��

PROCEDURE Close�f� File��

	



PROCEDURE Purge�f� File��

PROCEDURE Delete�f� File��

PROCEDURE Set�VAR r� Rider� f� File� pos� INTEGER��

PROCEDURE Pos�VAR r� Rider�� INTEGER�

PROCEDURE Read�VAR r� Rider� VAR ch� CHAR��

PROCEDURE Write�VAR r� Rider� ch� CHAR� VAR res� INTEGER��

PROCEDURE RemoteReadFile�VAR name� ARRAY OF CHAR�� File�

PROCEDURE RemoteWriteFile�f� File��

END HFiles�

��� The ROM Disk

The �les stored in the FlashROM memory can be used like normal �les� How�
ever� as these �les are marked as read only� it is not possible to change them�
nor to delete them� The only way to delete a �le from the ROM disk is to
completely erase the ROM disk� thus erasing every �le previously stored in the
ROM� This is necessary since the FlashROM does not support erasing small
portions of the ROM� The ROM disk is ��� Kbytes in size� since the other half
of the ROM is used for the bootloader� FPGA bitstream and core software�

DEFINITION HFiles�

PROCEDURE MakePersistent�VAR f� File��

PROCEDURE ReadOnly�f� File�� BOOLEAN�

PROCEDURE ResetROMDisk���

END HFiles�






Chapter �

Input and Output

��� Introduction
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Figure ��� shows how the Olga computer is connected to the Helicopter and
which signals have to be generated and read by the Olga system� There are four
types of signals�
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� Analog signals� generated by the inertial unit� a device with three gyro�
scopes� three accelerometers and a temperature sensor� The temperature
sensor is needed to compensate the temperature drift of the accelerome�
ters�

� PWM� signals� are the input signals of the servos used to control the
position of the main rotor �� servos�� the tail rotor �� servo� and the engine
�� servo�� The PWM signals are also generated by the Pilot receiver�
These signals are needed in case of am emergency� to allow the pilot to
get back the control of the helicopter in dangerous situations� The signals
can be read by Olga� in order to have a smooth transition from auto pilot
to human pilot and vice versa�

� The third type of signal are the four RS���� UART lines used for the on�
board GPS� the compass� the altimeter sensor� and DataLink� The latter�
is the �umbilical cord� to the ground� At startup teh Datalink is used to
start the auto pilot system� During autonomous �ight it is used to log
data on the ground� and to send the di�erential correction messages to
the on�board GPS system�

� The latter type of signals are pure Digital I
O used for various switches�

��� Analog to Digital Converters

The Oberon module ADC implements the interface to the analog converters�
Two MAX��� converters are used with a ���bit resolution and with � input
channels each� The procedure Read initiates a conversion on the speci�ed chan�
nel �� �� ��� and polls the ADC channel until it has �nished the conversion� This
takes between � �s and � �s� Thereafter it reads the converted data� The other
procedures read directly from the appropriate channel� �lters and transform the
read voltage into the required unit� For instance the procedure Temperature
returns the temperature in degrees Celsius� Further information and details on
the chip are contained in ����

The procedure Temperature implements the following low�pass �lter�

temp �� ����
 � temp � ����� � sensortemp

The procedure MotionPak transforms the input data into m�s� and into
grad�s� Moreover� since the accelerometers are temperature sensitive� their
output voltages have to be adjusted based on the current temperature� These
are the equations used for the transformations of the gyros and accelerometers�

omegax �� scaleox � sensorgyrox�

oemgay �� scaleoy � sensorgyroy�

omegaz �� scaleoz � sensogyroz�

accx �� ax� � temp� � ax� � temp � ax� � ax� � sensoraccx�

accy �� ay� � temp� � ay� � temp � ay� � ay� � sensoraccy�

accz �� az� � temp� � az� � temp� az� � az� � sensoraccz�

�
Pulse W ith Modulation
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The values scaleox� scaleoy and scaleoz are the actual scaling factor from
sensor value to physical value� The values ax����ax�� ay����ay� and az����az�
compensate the temperature drift of the accelerometers� These values were
computed on the basis of measurements� taken in a special oven�

DEFINITION ADC�

PROCEDURE Read �channel� INTEGER� VAR analog� INTEGER��

PROCEDURE Temperature ��� REAL� �� C ��

PROCEDURE Battery ��� REAL� �� V ��

PROCEDURE MotionPak �VAR ox� oy� oz�

ax� ay� az� REAL�� �� rad�s � m��s�s� ��

PROCEDURE SetMPOffset �oxoff� oyoff� ozoff�

axoff� ayoff� azoff� REAL�

END ADC�

��� Pulse Width Modulation and Rotor
Frequency

The servos are the actuators that actually control the helicopter� There are
� servos � one for the engine� one for the yaw �tail rotor�� the other four �

for pitch� roll and collective �main rotor�� Their input signals are pulse width
modulated �PWM�� These signals come from a multiplexer �see Figure ���� that
switches the PWM signals generated by a radio receiver with the PWM signals
generated from the auto pilot computer� For development purposes we need to
be able to read the signals of the radio receiver in order to smoothly change
from the pilot control to the auto pilot�

These functions are implemented in an FPGA� a Xilinx XC���� ����� In the
FPGA we implemented � PWM generators� The Lola ���� speci�cation and the
design are contained in Appendix A� To implement and program the FPGA we
used the Trianus and Hades systems� These tools are described in detail in ���
and �
��

The PWM signal is a pulse with a frequency of about �� Hz �see �gure
����� The pulse length is the relevant signal information and varies from � ms
to � ms� The servo accepting this signal positions the actuator proportionally
to the signal length� The main circuit is a counter that counts �� ms� Actually
since the clock frequency is ����� kHz we need to count to ���
 with a ���
bit counter� The PWM generator is simply a comparator that resets a �ip��op
when the counter reaches the desired pulse length� Thereafter� when the counter
starts the next cycle� it will reset the �ip��op� The number of FPGA cells used
for this purpose is ��� of the ���� available� that is less than ���

The FPGA also contains � PWM inputs and a rotor frequency timer �RFT��
The latter is similar to a PWM signal� but instead of counting the length of the
pulse� the circuit measures the length between pulses� The main clock is �����
kHz� therefore at least � bits are needed to cover the maximal length of a PWM
pulse of � ms� The maximalpulse length is ���������kHz� � �����ms� Logically
the RFT needs a larger number of bits� Since we suppose a maximal period of

�one of them is redundant
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about � second we need at least �
 bits� At full speed the rotor turns at ����
RPM� Since the sensor generates � pulses per rotation the minimal value is be
about �	 ms� That means that �� bits are used under normal �ight conditions�
Even in this case the number of cells used is very small� ��
�

The procedure PWMIn reads the width of the speci�ed channel and trans�
forms it into microseconds� Similarly the procedure Rotor returns a third of
the rotation period� The procedure PWMOut sets the length of the generated
PWM pulse� The last two procedures return the position of � switches used
for the switching of the PWM signals on the multiplexer board� These two
procedures reside in this module since they are actually PWM signals sent by

��



the pilot transmitter and decoded by a multi�switch decoder�

DEFINITION Servo�

PROCEDURE PWMOut�channel� pwm� INTEGER�� �� us ��

PROCEDURE PWMIn�channel� INTEGER� VAR pwm� INTEGER�� �� us ��

PROCEDURE Rotor�VAR period� INTEGER�� �� us ��

PROCEDURE Switch���� BOOLEAN�

PROCEDURE Switch���� BOOLEAN�

END Servo�

The FPGA also holds the circuitry necessary for the generation of a ��� Hz
interrupt� This circuit is a simple counter operating at a frequency of �����
kHz� therefore the counter counts up to ���� ��� bits��

The complete implementation on the FPGA takes ��� cells� which is about
�	� of the available space� We plan to port more functionality to the available
space in the future� Possible functionality could be the UART implementation�
digital �lters or even some control function� Some feasibility tests have already
been done with a UART implementation�

��� Serial Communication

The UART used is a Philips SC�
L���� This complex� low�power� and power�
ful chip provides � parallel UART channels� The module HKernel implements
its driver since it needs the serial communication to down�load modules after
startup�

To access a UART channel it has to be initialized with the procedure Start�
This initializes an input bu�er of ��� characters and con�gures the channel with
the parameters MR�� MR� and MR�� CSR � for the meaning of these values
we refer to ����� Moreover� the interrupt on receive is activated� On the other
side� the procedure Stop breaks the communication and disables the interrupt
for that channel� However� the software bu�er is accessible and contains the
characters received until the Stop routine was called�

When a channel is activated with the routine Start� the UART is ready to re�
ceive and transmit bytes via the procedures Send and Receive� Furthermore� the
procedure Available returns the number of characters deposited in the channel
input bu�er�

Since the receivers of the UART are asynchronous we need to implement an
interrupt handler� The UART interrupt request generates a fast interrupt on
the StrongARM which allows a very fast response to the request� The current
implementation needs less than ��� �s� To achieve such a speed the handler has
to be as simple as possible� but it also must be able to handle every kind of
interrupt request� The UART can generate di�erent kinds of interrupt requests
but we allow only two types of interrupts� receive with errors and receive without
errors �see ������ Furthermore� when an interrupt request arrives� the handler
must acknowledge the request and �nd the request source �the channel that
generated it�� Then it has to check if the requester is really ready to deliver the
information in case of a receive without error interrupt� If an interrupt of the

��



type receive with errors is detected� the handler not only has to acknowledge the
interrupt as for the errorless case but also must eliminate the source of the error�
Usually reading the incorrect byte from the UART is enough� The handler is
installed during initialization�

DEFINITION HKernel�

PROCEDURE Start�channel� INTEGER� MR	� MR�� MR�� CSR� CHAR��

PROCEDURE Stop�channel� INTEGER��

PROCEDURE Send�channel� INTEGER� ch� CHAR��

PROCEDURE Receive�channel� INTEGER� VAR ch� CHAR��

PROCEDURE SendInt�channel� INTEGER� int� INTEGER��

PROCEDURE ReceiveInt�channel� INTEGER� VAR int� INTEGER��

PROCEDURE SendString�channel� INTEGER� VAR s� ARRAY OF CHAR��

PROCEDURE ReceiveString�channel� INTEGER� VAR s� ARRAY OF CHAR��

PROCEDURE Available�channel� INTEGER�� INTEGER�

END HKernel�

��� Digital I	O

The helicopter needs some digital I
O for the control of external devices� for
example a grabber� The UART described in the previous section provides four
general digital I
O per channel� At present four of them are connected to LEDs�
These are used for the visulazation of system states� The other �� are free for
future use�

The procedure IOPC con�guresthe I
O pin of the four channels for input
or output mode� OP writes the four output pins and IP reads the value of the
four pins� Furthermore� the FPGA has a number of connected but unused pins
that could easily be adapted to implement digital I
O�

DEFINITION HKernel�

PROCEDURE IOPC�channel� INTEGER� ch� CHAR��

PROCEDURE OP�channel� INTEGER� x� CHAR��

PROCEDURE IP�channel� INTEGER� VAR x� CHAR��

END HKernel�

��
 FPGA initialization

Since the FPGA used is a SRAM�based device� it has to be con�gured during
the startup phase� We chose not to use a serial boot ROM for the FPGA� since
this chip would be used only at startup and for nothing else� Our solution�
instead is to con�gure the FPGA explicitly from the StrongARM�

We implemented two modes in which the FPGA can be con�gured� The
�rst mode is similar to the down�loading of a module� The main di�erence is
that the con�guration bitstream is then copied into the SRAM of the device
rather than that of the RAM memory� Such a down�load takes approximatively

��




 seconds since the bitstream size is about ��� Kbytes and the serial link speed
is ��� Kbauds� This solution is acceptable for the tests run in the lab� but not
in the �nal implementation�

The second mode is a more e�cient solution� The bitstream �le is stored in
the FlashROM� Right after startup the HKernel calls the procedure FPGAInit
that reads the bitstream �le and copies it to the FPGA con�guration memory�
This takes only about �� ms�
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Chapter �

The Linker�Loader

The Linker
Loader strategy adopted is the same as in the original Oberon op�
erating system ����� The modules needed are loaded and linked dynamically on
the target system� The helicopter computer does not have any user interface
devices like keyboard� display or mouse� Therefore all the development has to
be done on a host cross�platform� The host holds the development environment
�a PC running the Oberon System� while the cross�compiled programs have to
be down�loaded via serial link to the target system� The host�target protocol is
discussed in the next chapter� at �rst we will focus on the method in which the
object �le created on the host platform and transfered to the system is linked�
loaded and consequently made accessible to the rest of the system�

The HKernel holds a list of the modules loaded� the module data structure
is as follows�

Module � POINTER TO RECORD

size� key� INTEGER�

name� ARRAY �� OF CHAR� �� module identification ��

code� entrytab� ptrtab� cmdtab� importab� INTEGER� �� address ��

refcnt� INTEGER� �� reference count ��

link� Module �� linked list ��

END�

We adopted the same data structure as that used in the Oberon� ��� system
for the IT computer� i�e� a prototype of a network computer developed by Digital
with a StrongARM processor� When a module is loaded� it is placed in the
heap memory� After the linking process� the module structure looks like the
one shown in Figure ���� The command table holds the links to the commands
�parameterless procedures� declared within the module� The pointer table is
always empty� since no garbage collector is implemented� The entry table holds
the addresses of the exported procedures� Note that position � of the table holds
the entry address of the module body�
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Figure ���� Module Structure

The main procedures used for loading and linking are�

DEFINITION HModules�

PROCEDURE FindModule�VAR name� ARRAY OF CHAR� VAR m� Module��

PROCEDURE ReceiveMod�VAR name� ARRAY OF CHAR� VAR m� Module��

PROCEDURE CallP�m � Module� VAR pname� ARRAY OF CHAR��

END HModules�

FindModule searches in the list of modules loaded for the module with the
speci�ed name� If it �nds it� it returns its pointer� otherwise NIL� CallP calls
the command named pname of the module m� The procedure ReceiveMod is
responsible for the recursive down�loading process� The FindModule is used to
test whether the requested module is already linked� If it is not� then the host is
requested to send the module� Then the Module is linked and its body executed�

��� Linking Process

When the module is completely loaded and placed in memory the external calls
have to be replaced by real relative addresses� This is done with �xup chains�
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more precisely� one chain per imported module� The �xup chain is simply a
linked list of all external calls of a module�

The linking process traverses these �xup chains and replaces the o�set of the
next external call with the relative jump o�set for the called procedure� Since
the system does not support the import of variables� there are only external
procedure calls that have to be �xed� Furthermore� the reference counter is
initialized with zero and incremented by one each time the module is imported
by another one� This is necessary in order to allow a safe unloading of modules�
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Chapter �

Host Protocol

This chapter describes the protocol used for the host to target and target to
host communications� This protocol is needed during the startup phase to
establish a means of communication� After the startup process and after the
HKernel module has initialized everything� the main module HelyOS enters the
endless procedure Loop� This procedure waits for messages coming from the
serial port and interprets them� On the other hand the host has an Oberon task
installed �see ����� that polls the serial port and waits for commands arriving
from the target� When the auto pilot takes control of the helicopter the serial
cable is disconnected and the auto pilot computer communicates via the radio
communication protocol� described in another technical report ����


�� Host to Target

The target accepts two type of message� The command format is�

CallProc � sync�� CP�� name len�� fchar��g parameter����

LoadMod � sync�� MD�� name�

The �rst command tells the target to execute the command speci�ed with
the string name� The name string has to have the structure x�y where x is the
anme of the module and y the parameterless procedure name of the command
to be executed� Furthermore it is possible to give a parameter string to the
procedure called via the �eld parameter� This string can be accessed on the
target via the GetParameter procedure� If the module is not yet loaded the
target automatically requests the module from the host �see next section�� The
second command tells the system to load a module and as in the case above
the module is down�loaded only if it is not yet in the target� The sync value is
a synchronization sequence that allows the target to synchronize with the byte
stream� eliminating possible transmission errors�


�� Target to Host

The host accepts the followingmessages from the target system� The underlined
words are the responses from the host� The sync sequence� as in the host to
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target case� is a synchronization sequence that allows the host to synchronize
with the byte stream�

FileRequest � sync�� FR�� name � len�� fchar��g checksum�� j �� ��

FileSend � sync�� FS�� name len�� fchar��g�

FileSendPacked � sync�� FSP�� name len�� fpckn�� fchar��g chk��g �ACK��
j NACK����

Log � sync�� LOG�� �LN�� j STR�� string j CH�� ch�� j INT�� int�� j HEX��
int�� j FLOAT�� real�� j CLEAR����

ModuleStatus � sync�� MS�� modname key�� adr�� fclass�� form�� adr�� x��g
�FFX�

With the �rst two messages the target can load a �le from the host or write
a �le on the host� The HFiles module uses this protocol to access the remote �le
system� The �le request message includes a checksum� This is necessary since
a transmission error during the transfer of an object �le could compromise the
integrity of the whole system� On the other hand� the �le transfer from target to
host is more critical� since the host system is not a real�time system and cannot
guarantee a real�time response� Therefore there are two ways for sending a �le�
the �rst being a straight�forward sending of data via the serial link� This works
very well for small �les and is very fast� If the �les are larger� the host system
cannot sustain the data transfer and may lose some of the incoming bytes� To
overcome this problem we implemented a handshake protocol that slows down
the e�ective transfer rate� but ensures a correct transfer of large �les� The �le
is subdivided in packets with a checksum and a packet number� In this way the
host system can check errors in the packets received and� in case it detects an
error� it can request the re�sending of a packet�

The Log message is used by the HLog module to display information in the
Target Log Viewer � a special Oberon Viewer ���� opened at startup on the host
system�

The last message is used for debugging� See the next section for details�


�� Debugging

The user can analyze the status of all global variables of a speci�ed module�
with the HelyOS command ShowStatus� When the HKernel wants to display
such information it requests the host system to send the relative o�sets� type
and name of all global variables� The host system can access this information
thanks to the symbol �le extensions stored on the host system� For more details
on the �le structure see �����

��



Chapter �

Real�Time Scheduling

In general real�time operating systems the scheduling of the di�erent system
tasks has to be versatile� robust and must run transparently with as little over�
head as possible� In our case� however� we have an undeniable advantage� we
know the kinds of jobs needed by the auto pilot application� Therefore we can
focus and optimize our strategy for this application� We are convinced also that
the implementation of a simple and clear strategy� has the side e�ects of a more
robust� faster and smaller code size implementation�

The stategy usually adopted is the use of coroutines as the multitasking
entity� Our approach �see ������uses subroutines as the multitasking entity in�
stead� The scheduler starts the subroutine tasks in a �xed and prede�ned order�
according to their priority� The task may be preempted by other tasks� i�e� sus�
pended but� in opposition to the coroutine approach� they run to completion�

��� Tasks and Their Priority

As mentioned above an undeniable advantage is that we can assign priorities
o��line and choose the optimal strategy� We adopt a rate�monotonic priority
assignment strategy �	�� i�e� the priority of the task is proportional to its request
rate� This �xed priority strategy simpli�es the scheduling algorithms� and since
the tasks are started in a deterministic way� the behavior of the system is easy
to predict� Moreover� this strategy has been proven to be the optimal solution
for �xed priority assignment �see �	���

We have � types of tasks running in the system� tasks with ��� Hz rate� tasks
with �� Hz rate and background tasks� Tasks with ��� Hz rate are denoted as
Synchronous High Tasks and have a high priority� tasks with �� Hz rate are
called Synchronous Low Tasks and have a medium priority� while background
tasks are just Tasks and have a low priority�

The system implements four phases ��� �� �� �� of � ms each� After phase
� the system starts again from phase �� High synchronous tasks are started
at the beginning of each phase and preempt any tasks running with a lower
priority� Low synchronous tasks� on the other hand� are started every �� ms
when all the high priority tasks are completed and preempt all background tasks�
The phase in which the task is started is given by the parameter startphase in
InstallLowSync�
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A synchronous task can implement any complex computation� The only
limitation is that it has to terminate before another synchronous task of the
same priority can be started� This means that to guarantee the integrity of the
system the computation time of all high sync tasks cannot be greater than � ms�
and similarly the computation time of all the low sync tasks cannot be greater
than �� ms�

The background tasks are similar to the synchronous ones� the only di�erence
being that they are started as soon the processor has terminated the handling
of all synchronous tasks� The background tasks have the lowest priority� and
can be preempted by every synchronous task�

DEFINITION HelyOS�

TYPE

TaskCode � PROCEDURE �me� INTEGER���

Task � POINTER TO RECORD

proc� TaskCode�

name� ARRAY �� OF CHAR

END�

SyncCode � PROCEDURE �phase� INTEGER��

SyncTask� POINTER TO RECORD

proc� SyncCode�

name� ARRAY �� OF CHAR

END�

PROCEDURE InstallHighSync�s� SyncTask� VAR name� ARRAY OF CHAR��

PROCEDURE RemoveHighSync�s� SyncTask��

PROCEDURE InstallLowSync�s� SyncTask� VAR name� ARRAY OF CHAR�

startphase� INTEGER��

PROCEDURE RemoveLowSync�s� SyncTask��

PROCEDURE Install�t� Task� VAR name� ARRAY OF CHAR��

PROCEDURE Remove�t� Task��

PROCEDURE StartSync�

PROCEDURE StopSync�

PROCEDURE ExecTask�

END HelyOS�

��� Implementation and Performance

The scheduler implementation uses re�entrant interrupts� An interrupt signal
is generated every � ms� which starts the interrupt handler Scheduler� This
handler is the actual scheduler� It saves the processor status register �SPSR��
the general purpose registers �R���R���� the FP registers �FP���FP	� and in�
crements the phase counter �modulo ��� The other registers R��� R�� and R��
are special registers that are saved by the StrongARM processor automatically
�see ����� This is the prolog phase� Thereafter the scheduler has to enable the
interrupt� since the processor disables it automatically during the interrupt call�
The scheduler then starts the synchronous high and low priority tasks� When
all the started tasks are completed� the interrupt handler stops the re�entrant
interrupt to protect the epilog� In the epilog phase� it restores the registers�
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the processor status and returns to the interrupted process� a background task
or a synchronous low task� With the return the interrupts are automatically
re�enabled�

The interrupt overhead is less then 
 �s� and is mainly due to the memory
access time needed to store all the registers� Therefore one of the optimizations
is to reduce this overhead by reducing the number of registers neededing to be
saved� To do so the emulation strategy was changed� Normal registers are used
for the emulation of the �oating�point registers� reducing the number of register
to be saved to the �� general purpose registers and the processor status�

MODULE HelyOS�

PROCEDURE ��� Scheduler�

VAR

fpe� ARRAY �� OF INTEGER� �� local FP Register ��

lr� spsr� localphase� INTEGER� list� SyncTask�

BEGIN

�� ��������������� Prolog ������������������� ��

STPSR��� spsr�� ��store SPSR ��

FPE�SaveFPR�fpe�� �� save FP register ��

PUT�HKernel�FPGAINTACK� 	�� �� clear the fpga�s int request ��

phase �� �phase � �� MOD ��

localphase �� phase�

�� ��������������� Scheduler ���������������� ��

SetIRQ� �� enable re�entrant IRQ ��

�� start all sync high priority task ��

list�� synchigh�

WHILE list � syncguard DO

IF list�startphase � Always THEN list�proc�localphase� END�

list �� list�next

END�

�� start low priority tasks ��

list�� synclow�

WHILE list � syncguard DO

IF list�startphase � localphase THEN list�proc�localphase� END�

list �� list�next

END�

ResetIRQ� �� disable re�entrant IRQ ��

�� ���������������� Epilog ������������������ ��

FPE�RestoreFPR�fpe��

LDPSR��
H� spsr� �� SPSR �� spsr ��

END Scheduler�

END HelyOS�
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Figure 	��� Scheduling Example

��� Example

Figure 	�� shows a possible con�guration of the system and its timing� The Input
high sync task is started in each phase �every � ms� and has a high priority�
The Navigation low sync task is started only in phase � and has a lower priority�
Thus this task can be preempted by the Input task� The Logger is a background
task that runs with the lowest priority� It is preempted by every synchronous
task�

��



Chapter 	

Floating�point Emulation

The emulator� is completely integrated into the system� and its execution is
transparent to the applications� The StrongARM processor generates an un�
de�ned instruction trap whenever its decoder decodes an unknown instruction�
The unde�ned instruction trap handler decodes the unknown instruction and�
if it is a �oating�point instruction� executes it�

We chose to be compatible with the existing ARM �oating�point instruction
set and adopted the IEEE 	�� �oating�point format with �� bits� Internally the
emulator emulates 
 �oating�points registers� Each register is represented with

 bytes� � for the mantissa and � for the exponent�

��� Look
ahead Optimization

Since a �oating�point instruction is usually followed by more FP instructions�
the trap handler can reduce the overhead of the unde�ned instruction trap� if
instead of a return it directly tries to decode the following instruction� Such a
trap handler is slightly more complex ��� assembler instructions more� but ���
faster than the normal handler without this look�ahead feature� See appendix
B for more details on the number of �oating�point instructions needed and the
number of sequential �oating�point instructions�

��� Performance

Since the control of a helicopter uses �oating�point operations very frequently�
performance of such an emulation is a central concern in our project� The per�
formance achieved with the current look�ahead solution is about ��� MFLOPS�

�The emulator was written by N� Wirth
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��� Floating
point Library

To completely eliminate the trap overhead� the compiler was changed to call the
�oating�point library directly� instead of generating a �oating�point instruction�
This reduces the overhead of a context switch for each instruction� Moreover�
the �oating�point registers are normal integer registers� thus reducing memory
accesses� This method is about � times faster than the emulation with traps�
Its performance is ��� MFLOPS�
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Chapter 


Numerical Support

��� The Math Module

The Math module implements the following standard functions� The imple�
mentation takes advantage of certain features of the �oating�point emulation
routines�

DEFINITION Math�

PROCEDURE arctan �x� REAL�� REAL�

PROCEDURE cos �x �REAL�� REAL�

PROCEDURE exp �x� REAL�� REAL�

PROCEDURE ln �x� REAL�� REAL�

PROCEDURE sin �x� REAL�� REAL�

PROCEDURE sqrt �x� REAL�� REAL�

END Math�

��� The MatLib Module

This module implements matrix operations� The operations take advantage of
the RIDER concept of the OberonSA compiler �����

DEFINITION MatLib�

PROCEDURE AddMat �VAR a� b� c� ARRAY OF REAL� n� INTEGER��

PROCEDURE InvertMat �VAR a� ARRAY OF REAL� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE MultMatMN� �VAR a� b� c� ARRAY OF REAL� m� n� INTEGER��

PROCEDURE ScalarMult �VAR a� ARRAY OF REAL� x� REAL�

VAR b� ARRAY OF REAL� n� INTEGER��

PROCEDURE ScalarProd �VAR a� b� ARRAY OF REAL� n� INTEGER�� REAL�

PROCEDURE SubtractMat �VAR a� b� c� ARRAY OF REAL� n� INTEGER��

PROCEDURE TransposeMatrix �VAR a� b� ARRAY OF REAL�

rows� cols� INTEGER�

END MatLib�
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Chapter ��

The Startup Process

The �rst problem that has to be solved in a new system is how to start it� This
may seem to be a small detail� but if it is not solved in a clean manner from
the beginning it can turn into be a painful problem later� In this project we
adopted the same strategy as that used in the Ceres System ����� a small piece
of code �less than ��� instructions� resident in ROM is executed after each reset
or startup� It is responsible for loading the system core via the serial link or
from the ROM and jumps to its module entry point� After some initialization�
the bootloader tests a pin of the UART chip to decide if it will download the
core via the link or from the ROM� If the boot pin is high then the ROM is
selected� otherwise the serial link is used as source for the core� Once the core is
loaded and started� it performs the initialization of memory and devices� then it
starts the procedure HelyOS�Loop which waits for commands sent via the serial
link� The protocol is the same for both types of download� In EBNF notation�

Boot � fsize�� adr�� fword��gg ��� startadr���

In case of a serial download� the host computer connected via the serial link
is responsible for this unidirectional protocol� It sends a sequence of blocks
of the size size that is then copied to the memory starting from the absolute
address adr� The last block is characterized by the size � � and terminates the
protocol with startadr as the absolute entry address of the code to be executed�

The time needed to download the full system via serial link� i�e� downloading
the software core� initializing the FPGA and all the devices� down�loading all
the base modules and starting the control application� is less than �� seconds�
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Chapter ��

HelyOS Commands

The module HelyOS exports the following commands� As mentioned above�
some of these commands accept a parameter string sent from the host system
to the target via the call message�

DEFINITION HelyOS�

PROCEDURE ShowModules�

PROCEDURE ShowHeap�

PROCEDURE ShowCommands�

PROCEDURE ShowStatus�

PROCEDURE Free�

PROCEDURE Directory�

PROCEDURE RemoteRead�

PROCEDURE RemoteWrite�

PROCEDURE MakePersistent�

PROCEDURE ResetROMDisk�

PROCEDURE ShowTasks�

PROCEDURE StartSync�

PROCEDURE StopSync�

PROCEDURE RESET�

END HelyOS�

The command ShowModules lists all loaded modules� their size and their
reference count� ShowHeap lists all free heap blocks and their sizes� ShowCom�
mands lists the names of all commands implemented by a module� ShowStatus
shows the value of all global variables of a module� Last but not least� Free
unloads a module�
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The other commands are used to interact with the �le system� RemoteRead
and RemoteWrite allow the Olga computer to access the host �le system�
The MakePersistent command moves a �le from the RAM disk to the ROM
disk� Since the ROM disk is implemented in a FlashROM we cannot selec�
tively delete �les from the disk but can only delete the complete structure with
ResetROMDisk�

The task system can be started or stopped with the StartSync and StopSync
commands� A list of all installed tasks can be displayed with the command
ShowTasks� The system can be restarted with the RESET command�
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Chapter ��

HLog Module

This module allows the target system to write simple strings on the host system�
The host system automatically opens an Oberon Viewer� where all the messages
sent by the target are displayed�

DEFINITION HLog�

PROCEDURE Ch �ch� CHAR��

PROCEDURE Clear ���

PROCEDURE Hex �h� LONGINT���

PROCEDURE Int �i� LONGINT��

PROCEDURE Ln ���

PROCEDURE Real �r� REAL��

PROCEDURE Str �VAR s� ARRAY OF CHAR��

PROCEDURE Time ���

END HLog�
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Appendix A

FPGA

This is the Lola ���� program that describes the hardware implemented in the
FPGA� The FPGA was implemented using the Trianus ��� and Hades �
� tools�
Figure A shows the placement of the varius circuits�

MODULE Servo� �� ms� �
 Jul 
� ��

�� Note� SR not used since Trianus doesn�t

accept loop connections without labels

��

�� GClk � �	MHz� G� � ���
��MHz� G� � ��	�� KHz ��

IN

INTACK�� GClk� G�� G�� RTF � BIT�

PWMIn � ��� BIT�

OUT

INT�� F�		�� F�	�� Clk � BIT�

PWMOut � ��� BIT�

VAR

pscale� pscalec� ��� BIT�

freq�		� freq�		c� ���� BIT� F�		rst� � BIT�

intsr� BIT�

cntr�	� cntr�	c� ���� BIT� cntr�	rst� � BIT�

outcmp� oactive� syncoactive� pwmsr� pwmrs� ��� BIT�

outreg� syncoutreg� ����
� BIT�

incntrst�� incntsync� ��� BIT�

incnt� incntc� inreg� ����
� BIT�

rtfrst�� rtfsync� BIT�

rtfcnt� rtfcntc� rtfreg� ��
� BIT�

BEGIN
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�� �������������� prescaler ���������������������������������������������

pscale�	 �� REG�G�� �pscale�	�� pscalec�	 �� pscale�	�

pscale�� �� REG�G�� pscale�� � pscalec�	��

pscalec�� �� pscalec�	�pscale���

pscale�� �� REG�G�� pscale�� � pscalec����

pscalec�� �� pscalec�� � pscale���

pscale�� �� REG�G�� pscale�� � pscalec����

pscalec�� �� pscalec�� � pscale���

Clk �� pscale���

�� �������������� Interrupt generator ������������������������������� ��

freq�		�	 �� REG�G�� �freq�		�	 � F�		���

freq�		c�	 �� freq�		�	�

FOR i �� � �� �	 DO

freq�		�i �� REG�G�� �freq�		�i � freq�		c�i � ��� � F�		���

freq�		c�i �� freq�		�i � freq�		c�i � ���

END�

�� freq�		����� �		Hz Pulse ��

F�		rst� ���freq�		�	 � �freq�		�� � �freq�		�� � �freq�		�� �

�freq�		�� � �freq�		�� � �freq�		�� � freq�		�� �

freq�		�
 � freq�		�
 � �freq�		��	�

F�	� �� cntr�	rst� � �� �	 Hz Pulse ��

F�		� �� F�		rst�� �� �		Hz Pulse ��

��INT� �� SR��F�		�� �INTACK��� ��

INT� �� ��INTACK� � intsr��

intsr �� ��F�		� � INT���

�� �������������� pwm outputs ���������������������������������������� ��

�� main counter �

�	ms � ��	��kHz � ��	
 �� if cntr � ��	� restart cntr

��

cntr�	�	 �� REG�G�� �cntr�	�	 � cntr�	rst���

cntr�	c�	 �� cntr�	�	�

FOR i �� � �� �� DO

cntr�	�i �� REG�G�� �cntr�	�i � cntr�	c�i���� � cntr�	rst���

cntr�	c� i �� cntr�	�i � cntr�	c�i���

END�

cntr�	rst� �� �cntr�	�	 � �cntr�	�� � �cntr�	�� � �cntr�	�� �

�cntr�	�� � �cntr�	�� � �cntr�	�� � �cntr�	�� �

�cntr�	�
 � cntr�	�
 � cntr�	��	 � cntr�	��� � �cntr�	����

�� � pwm outs ��

FOR i �� 	 �� � DO

oactive�i �� REG�G�� MUX�cntr�	rst��

REG�GClk� syncoactive�i�� oactive�i���

FOR j �� 	 �� 
 DO

outreg�i�j �� REG�G�� MUX�cntr�	rst��
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REG�GClk� syncoutreg�i�j�� outreg�i�j��

END�

outcmp�i �� �outreg�i�	 � cntr�	�	� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�� � cntr�	��� � �outreg�i�� � cntr�	��� �

�outreg�i�
 � cntr�	�
��

�� PWMOut�i �� oactive�i � SR��cntr�	rst�� �outcmp�i� ��

pwmsr�i �� ��cntr�	rst� � pwmrs�i�� pwmrs�i �� ��outcmp�i � pwmsr�i��

PWMOut�i �� oactive�i � pwmsr�i�

END�

�� �������������� pwm inputs ����������������������������������������� ��

FOR i �� 	 �� � DO

incnt�i�	 �� REG�G�� �incnt�i�	 � PWMIn�i� � incntrst��i��

incntc�i�	 �� incnt�i�	 � PWMIn�i�

inreg�i�	 �� REG�G�� MUX�incntrst��i� incnt�i�	� inreg�i�	���

FOR j �� � �� 
 DO

incnt�i�j �� REG�G�� �incnt�i�j � incntc�i�j���� � incntrst��i��

incntc�i�j �� incnt�i�j � incntc�i�j����

inreg�i�j �� REG�G�� MUX�incntrst��i� incnt�i�j� inreg�i�j��

END�

incntsync�i �� REG�G�� PWMIn�i��

incntrst��i �� PWMIn�i � �incntsync�i�

END�

�� �������������� rotor frequency ������������������������������������ ��

rtfcnt�	 �� REG�G�� �rtfcnt�	 � rtfrst���

rtfcntc�	 �� rtfcnt�	�

rtfreg�	 �� REG�G�� MUX�rtfrst�� rtfcnt�	� rtfreg�	���

FOR j �� � �� �� DO

rtfcnt�j �� REG�G�� �rtfcnt�j � rtfcntc�j���� � rtfrst���

rtfcntc�j �� rtfcnt�j � rtfcntc�j����

rtfreg�j �� REG�G�� MUX�rtfrst�� rtfcnt�j� rtfreg�j��

END�

rtfsync �� REG�G�� RTF��

rtfrst� �� �RTF � rtfsync�

END Servo�
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Appendix B

Helicopter System Modules

The following tables list the modules of the system� along with the code size
�column Code� in KBytes� data size �column Data� in KBytes� the number of
�oating�point instructions �column Fp�� and the number of sequential �oating�
point instructions �column Seq� Fp��� i�e instructions following other �oating�
point instructions�

Module Size Data Fp
 Seq
 Fp


ADC ��� �� ��� ��	
FPE ��� 	� � �
HelyOS ���� ��� � �
HFileDir ���� �� �
 �
HFiles ���� 	 � �
HLog ��� 	 � �
HModules �	� �� 	 �
HROM ��� 	� � �
Math ��� 	 �
� ���
MatLib 	�	 �� ��� ��
Servo ��� �� � �

Total 		�� ��� ��� ���

Table B��� Software Core Modules

Module Size Data Fp
 Seq
 Fp

BootBurner ��� 	 � �
CoreBurner �	� 	 � �
FPGABurner �	� �� � �

Total ��
� �� � �

Table B��� Utility Modules

��
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